Existence of Solutions of Navier-Stokes Equations

Thit Thit Win ${ }^{*}$

Abstract

In this paper, some function spaces, definitions and lemmas are presented first. Next, the variational formulation and the initial boundary value problem of the Navier-Stokes equations are discussed. Finally, the existence of solutions of Navier-Stokes equations are determined.

1. Preliminaries

1.1 Some Function Spaces

Let Ω be an open bounded set in \square^{n}. We assume

$$
\begin{align*}
\mathrm{V} & =\{\mathrm{v} \in \mathscr{D}(\Omega) \mid \operatorname{div} \mathrm{v}=0\}, \tag{1}\\
\mathrm{V} & =\text { the closure of } \mathrm{V} \text { in } \mathrm{H}_{0}^{1}(\Omega), \\
& =\left\{\mathrm{v} \in \mathrm{H}_{0}^{1}(\Omega) \mid \operatorname{div} \mathrm{v}=0\right\} \tag{2}\\
\mathrm{H} & =\text { the closure of } \mathrm{V} \text { in } \mathrm{L}^{2}(\Omega), \\
& =\left\{\mathrm{v} \in \mathrm{~L}^{2}(\Omega)\left|\operatorname{div} \mathrm{v}=0, \Gamma_{\mathrm{v}} \mathrm{v}=\mathrm{v} \cdot \mathrm{v}\right| \Gamma=0\right\} . \tag{3}
\end{align*}
$$

The space H is equipped with the scalar product (\cdot, \cdot) induced by $\mathrm{L}^{2}(\Omega)$; the space V is a Hilbert space with the scalar product

$$
\begin{equation*}
((\mathrm{u}, \mathrm{v}))=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{D}_{\mathrm{i}} \mathrm{u}, \mathrm{D}_{\mathrm{i}} \mathrm{v}\right), \tag{4}
\end{equation*}
$$

since Ω is bounded. The space V is contained in H and it is dense in H . The injection is continuous. Let H^{\prime} and V^{\prime} denote the dual spaces of H and V , and let i denote the injection mapping from V into H . The adjoint operator i^{\prime} is linear and continuous from H^{\prime} into V^{\prime}, and i^{\prime} is one to one since $\mathrm{i}(\mathrm{V})=\mathrm{V}$ is dense in H and $\mathrm{i}^{\prime}\left(\mathrm{H}^{\prime}\right)$ is dense in V^{\prime} since i is one to one; therefore H^{\prime} can be identified with a dense subspace of V^{\prime}.

Moreover, by the Riesz representation theorem, we can identify H and H^{\prime}, and we arrive at the inclusions

$$
\begin{equation*}
\mathrm{V} \subset \mathrm{H} \equiv \mathrm{H}^{\prime} \subset \mathrm{V}^{\prime}, \tag{5}
\end{equation*}
$$

where each space is dense in the following one and the injections are continuous.
As a consequence of the previous identifications, the scalar product in H of $f \in H$ and $\mathrm{u} \in \mathrm{V}$ is the same as the scalar product of f and u in the duality between V^{\prime} and V such that

$$
\begin{equation*}
\langle\mathrm{f}, \mathrm{u}\rangle=(\mathrm{f}, \mathrm{u}), \forall \mathrm{f} \in \mathrm{H}, \forall \mathrm{u} \in \mathrm{~V} \tag{6}
\end{equation*}
$$

For each u in V, the form

$$
\begin{equation*}
\mathrm{v} \in \mathrm{~V} \rightarrow((\mathrm{u}, \mathrm{v})) \in \square \tag{7}
\end{equation*}
$$

is linear and continuous on V ; therefore there exists an element of V^{\prime} which we denote by Au such that

$$
\begin{equation*}
\langle\mathrm{Au}, \mathrm{v}\rangle=((\mathrm{u}, \mathrm{v})), \forall \mathrm{v} \in \mathrm{~V}, \tag{8}
\end{equation*}
$$

where the mapping $\mathrm{u} \rightarrow \mathrm{Au}$ is linear and continuous and is an isomorphism from V onto V^{\prime}.

[^0]Yadanabon University Research Journal, 2019, Vol-10, No. 1

1.2 Definition

Let a, b be two extended real numbers, $-\infty \leq \mathrm{a}<\mathrm{b} \leq \infty$, and let X be a Banach space. For given $\alpha, 1 \leq \alpha<+\infty, L^{\alpha}(a, b ; X)$ denotes the space of L^{α}-integrable functions from $[\mathrm{a}, \mathrm{b}]$ into X , which is a Banach space with the norm

$$
\left\{\int_{a}^{b}\|f(t)\|_{X}^{\alpha} d t\right\}^{\frac{1}{\alpha}} .
$$

1.3 Definition

The space $L^{\infty}(a, b ; X)$ is the space of essentially bounded functions from $[a, b]$ into X and is equipped with the Banach norm

$$
\text { Ess } \sup _{[a, b]}\|f(t)\|_{X} .
$$

1.4 Definition

The space $C([a, b] ; X)$ is the space of continuous functions from $[a, b]$ into X and if $-\infty<\mathrm{a}<\mathrm{b}<\infty$ is equipped with the Banach norm

$$
\sup _{t \in[a, b]}\|f(t)\|_{X} .
$$

1.5 Lemma

Let X be a given Banach space with dual X^{\prime} and let u and g be two functions
belonging to $\mathrm{L}^{1}(\mathrm{a}, \mathrm{b} ; \mathrm{X})$. Then, the following three conditions are equivalent
(i) u is a.e equal to a primitive function of g,

$$
\begin{equation*}
\mathrm{u}(\mathrm{t})=\xi+\int_{0}^{\mathrm{t}} \mathrm{~g}(\mathrm{~s}) \mathrm{ds}, \xi \in \mathrm{X}, \text { a.e, } \mathrm{t} \in[\mathrm{a}, \mathrm{~b}] \tag{9}
\end{equation*}
$$

(ii) For each test function $\phi \in \mathscr{D}((a, b))$,

$$
\begin{equation*}
\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{u}(\mathrm{t}) \phi^{\prime}(\mathrm{t}) \mathrm{dt}=-\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{~g}(\mathrm{t}) \phi(\mathrm{t}) \mathrm{dt}\left(\phi^{\prime}=\frac{\mathrm{d} \phi}{\mathrm{dt}}\right) ; \tag{10}
\end{equation*}
$$

(iii) For each $\eta \in X^{\prime}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}\langle\mathrm{u}, \eta\rangle=\langle\mathrm{g}, \eta\rangle, \tag{11}
\end{equation*}
$$

in the scalar distribution sense, on (a,b). If (i)-(iii) are satisfied u, in particular, is a.e. equal to a continuous function from $[a, b]$ into X.
Proof: see [7].
Let X_{0}, X, X_{1} be three Banach spaces such that $X_{0} \subset X \subset X_{1}$, where the injections are continuous and X_{i} is reflexive, $i=0,1$, the injection $X_{0} \rightarrow X$ is compact.

1.6 Definition

Let $\mathrm{T}>0$ be a fixed finite number, and let α_{0}, α_{1} be two finite numbers such that $\alpha_{i}>1, i=0,1$.

We consider the space

$$
\begin{equation*}
\boldsymbol{y}=\boldsymbol{y}\left(0, \mathrm{~T} ; \alpha_{0}, \alpha_{1} ; \mathrm{X}_{0}, \mathrm{X}_{1}\right) \tag{12}
\end{equation*}
$$

Yadanabon University Research Journal, 2019, Vol-10, No. 1

$$
\begin{equation*}
\boldsymbol{y}=\left\{v \in \mathrm{~L}^{\alpha_{0}}\left(0, \mathrm{~T} ; \mathrm{X}_{0}\right) \left\lvert\, \mathrm{v}^{\prime}=\frac{\mathrm{dv}}{\mathrm{dt}} \in \mathrm{~L}^{\alpha_{1}}\left(0, \mathrm{~T} ; \mathrm{X}_{1}\right)\right.\right\} . \tag{13}
\end{equation*}
$$

The space \mathscr{U} is provided with the norm

$$
\begin{equation*}
\|\mathrm{v}\|_{y}=\|\mathrm{v}\|_{\mathrm{L}^{\mathrm{L}_{0}}\left(0, T ; X_{0}\right)}+\left\|\mathrm{v}^{\prime}\right\|_{\mathrm{L}^{\mathrm{L}^{1}}\left(0, \mathrm{~T} ; \mathrm{X}_{1}\right)} \tag{14}
\end{equation*}
$$

which makes it a Banach space. It is evident that $\boldsymbol{\mathcal { C }} \subset \mathrm{L}^{\alpha_{0}}(0, T ; X)$, with a continuous injection.

Let us assume that X_{0}, X, X_{1} are Hilbert space with

$$
\begin{equation*}
\mathrm{X}_{0} \subset \mathrm{X} \subset \mathrm{X}_{1}, \tag{15}
\end{equation*}
$$

the injections being continuous and the injection of X_{0} into X is compact.

If v is a function from R into X_{1}, we denote by $\hat{\mathrm{v}}$ its Fourier transform

$$
\begin{equation*}
\hat{\mathrm{v}}(\tau)=\int_{-\infty}^{+\infty} \mathrm{e}^{-2 i \pi t \tau} \mathrm{v}(\mathrm{t}) \mathrm{dt} . \tag{17}
\end{equation*}
$$

The derivative in t of order γ of v is the inverse Fourier transform of $(2 i \pi \tau)^{\gamma} \hat{v}$ or

$$
\begin{equation*}
\mathrm{D}_{\mathrm{t}}^{\mathrm{r}} \mathrm{v}(\tau)=(2 \mathrm{i} \pi \tau)^{\gamma} \hat{\mathrm{v}}(\tau) \tag{18}
\end{equation*}
$$

1.7 Definition

For given $\gamma>0$, we define the space

$$
\begin{equation*}
\mathcal{H}^{\gamma}\left(\mathrm{R} ; \mathrm{X}_{0}, \mathrm{X}_{1}\right)=\left\{\mathrm{v} \in \mathrm{~L}^{2}\left(\mathrm{R} ; \mathrm{X}_{0}\right) \mid \mathrm{D}_{\mathrm{t}}^{\gamma} \mathrm{v} \in \mathrm{~L}^{2}\left(\mathrm{R} ; \mathrm{X}_{1}\right)\right\} . \tag{19}
\end{equation*}
$$

This is a Hilbert space for the norm

$$
\|v\|_{\mathscr{H}^{\prime}\left(R ; X_{0}, X_{1}\right)}=\left\{\|v\|_{L^{2}\left(R ; X_{0}\right)}^{2}+\left\|\tau \tau^{\gamma} \hat{\mathrm{v}}\right\|_{L^{2}\left(\mathrm{R} ; \mathrm{X}_{1}\right)}^{2}\right\}^{\frac{1}{2}} .
$$

We associate with any set $\mathrm{K} \subset \mathrm{R}$, the subspace $\mathscr{H}_{\mathrm{K}}^{\gamma}$ of \mathscr{H}^{γ} defined as the set of functions u in \mathscr{H}^{γ} with support contained in K :

$$
\begin{equation*}
\mathscr{H}_{\mathrm{K}}^{\gamma}\left(\mathrm{R} ; \mathrm{X}_{0}, \mathrm{X}_{1}\right)=\left\{\mathrm{u} \in \mathscr{H}^{\gamma}\left(\mathrm{R} ; \mathrm{X}_{0}, \mathrm{X}_{1}\right) \mid \text { support } \mathrm{u} \subset \mathrm{~K}\right\} . \tag{20}
\end{equation*}
$$

1.8 Theorem

Let us assume that X_{0}, X, X_{1} are Hilbert spaces which satisfy (15) and (16). Then for any bounded set K and any $\gamma>0$, the injection of $\mathscr{H}_{K}^{\gamma}\left(R ; X_{0}, X_{1}\right)$ into $L^{2}(R ; X)$ is compact. Proof: See [7].

2. NAVIER-STOKES EQUATIONS

We assume that a fluid fills a region Ω of space. If the fluid is Newtonian, then the functions $\rho, \mathrm{p}, \mathrm{u}$ are governed by the momentum conservation equation (Navier-Stokes equation), by the continuity equation (mass conservation equation) and by some constitutive law connecting ρ and p :

$$
\begin{array}{r}
\rho\left(\frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{u}_{\mathrm{i}} \frac{\partial \mathrm{u}}{\partial \mathrm{x}_{\mathrm{i}}}\right)-\mu \Delta \mathrm{u}-(3 \lambda+\mu) \Delta \mathrm{u}+\nabla \mathrm{p}=\mathrm{f}, \\
\frac{\partial \rho}{\partial \mathrm{t}}+\operatorname{div}(\rho \mathrm{u})=0 \tag{22}
\end{array}
$$

Yadanabon University Research Journal, 2019, Vol-10, No. 1
where $\mu>0$ is the kinematic viscosity, λ another physical parameter and $f=f(x, t)$
represents a density of force per unit volume. If the fluid is homogeneous and incompressible, then ρ is a constant independent of x and t and the equations reduce to

$$
\begin{array}{r}
\rho\left(\frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{u}_{\mathrm{i}} \frac{\partial \mathrm{u}}{\partial \mathrm{x}_{\mathrm{i}}}\right)-\mu \Delta \mathrm{u}+\nabla \mathrm{p}=\mathrm{f}, \\
\operatorname{div} \mathrm{u}=0 . \tag{24}
\end{array}
$$

Usually we take $\rho=1$, set $\nu=\mu$ and using the differential operator $\nabla=\left(\frac{\partial}{\partial \mathrm{x}_{1}}, \frac{\partial}{\partial \mathrm{x}_{2}}, \ldots, \frac{\partial}{\partial \mathrm{x}_{\mathrm{n}}}\right)$ arrive at

$$
\begin{equation*}
\frac{\partial \mathrm{u}}{\partial \mathrm{t}}+(\mathrm{u} \cdot \nabla) \mathrm{u}-\mathrm{v} \Delta \mathrm{u}+\nabla \mathrm{p}=\mathrm{f} \tag{25}
\end{equation*}
$$

with initial condition:

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, 0)=\mathrm{u}_{0}(\mathrm{x}), \mathrm{x} \in \Omega\left(\mathrm{u}_{0} \text { given }\right) \tag{26}
\end{equation*}
$$

and boundary condition:

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, \mathrm{t})=\phi(\mathrm{x}, \mathrm{t}), \mathrm{x} \in \Gamma, \mathrm{t}>0 \text { (} \Omega \text { bounded, } \phi \text { given }) . \tag{27}
\end{equation*}
$$

3. VARIATIONAL FORMULATION

Let Ω be a Lipschitz open bounded set in R^{n} and let $\mathrm{T}>0$ be fixed. The initial boundary value problem of the full Navier-Stokes equations is the following:

To find a vector function

$$
\mathrm{u}: \Omega \times[0, \mathrm{~T}] \rightarrow \mathrm{R}^{\mathrm{n}}
$$

and a scalar function

$$
\mathrm{p}: \Omega \times[0, \mathrm{~T}] \rightarrow \mathrm{R},
$$

such that

$$
\begin{gather*}
\frac{\partial \mathrm{u}}{\partial \mathrm{t}}-\mathrm{v} \Delta \mathrm{u}+\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{u}_{\mathrm{i}} \mathrm{D}_{\mathrm{i}} \mathrm{u}+\nabla \mathrm{p}=\mathrm{f} \text { in } \mathrm{Q}=\Omega \times(0, \mathrm{~T}), \tag{28}\\
\quad \operatorname{div} \mathrm{u}=0 \text { in } \mathrm{Q}, \tag{29}\\
\mathrm{u}=0 \text { on } \partial \Omega \times(0, \mathrm{~T}), \tag{30}\\
\mathrm{u}(\mathrm{x}, 0)=\mathrm{u}_{0}(\mathrm{x}), \text { in } \Omega . \tag{31}
\end{gather*}
$$

As before, the functions f and u_{0} are given, defined on $\Omega \times[0, T]$ and Ω respectively. Let us assume that u and p are classical solutions of (28)-(31), say $u \in C^{2}(\overline{\mathrm{Q}}), \mathrm{p} \in \mathrm{C}^{1}(\overline{\mathrm{Q}})$. Obviously $u \in L^{2}(0, T ; V)$. Multiplying (28) by $v \in V$ and integrating over Ω, we have

$$
\int_{\Omega} \frac{\partial \mathrm{u}}{\partial \mathrm{t}} \mathrm{vdx}-\int_{\Omega} v(\Delta \mathrm{u}) \mathrm{vdx}+\int_{\Omega} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{u}_{\mathrm{i}}\left(\mathrm{D}_{\mathrm{i}} \mathrm{u}\right) \mathrm{vdx}+\int_{\Omega} \nabla \mathrm{pvdx}=\int_{\Omega} \mathrm{fvdx} .
$$

We define the trilinear form b by setting

$$
\mathrm{b}(\mathrm{u}, \mathrm{v}, \mathrm{w})=\sum_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{n}} \int_{\Omega} \mathrm{u}_{\mathrm{i}}\left(\mathrm{D}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}\right) \mathrm{w}_{\mathrm{j}} \mathrm{dx} .
$$

Then we have

$$
\left(\frac{\partial \mathrm{u}}{\partial \mathrm{t}}, \mathrm{v}\right)+v \int_{\Omega}(\nabla \mathrm{u} \cdot \nabla \mathrm{v}) \mathrm{dx}+\mathrm{b}(\mathrm{u}, \mathrm{u}, \mathrm{v})+\int_{\Omega} \mathrm{pdivvdx}=\langle\mathrm{f}, \mathrm{v}\rangle
$$

Yadanabon University Research Journal, 2019, Vol-10, No. 1

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{u}, \mathrm{v})+\mathrm{v}((\mathrm{u}, \mathrm{v}))+\mathrm{b}(\mathrm{u}, \mathrm{u}, \mathrm{v})=\langle\mathrm{f}, \mathrm{v}\rangle . \tag{32}
\end{equation*}
$$

By continuity, equation (32) will hold for each $v \in V$.

3.1 Variational Problem

For f and u_{0} given with

$$
\begin{align*}
& \mathrm{f} \in \mathrm{~L}^{2}\left(0, \mathrm{~T} ; \mathrm{V}^{\prime}\right) \tag{33}\\
& \mathrm{u}_{0} \in \mathrm{H} \tag{34}
\end{align*}
$$

to find u satisfying

$$
\begin{equation*}
\mathrm{u} \in \mathrm{~L}^{2}(0, \mathrm{~T} ; \mathrm{V}) \tag{35}
\end{equation*}
$$

and

$$
\begin{gather*}
\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{u}, \mathrm{v})+\mathrm{v}((\mathrm{u}, \mathrm{v}))+\mathrm{b}(\mathrm{u}, \mathrm{u}, \mathrm{v})=\langle\mathrm{f}, \mathrm{v}\rangle, \forall \mathrm{v} \in \mathrm{~V} \tag{36}\\
\mathrm{u}(0)=\mathrm{u}_{0} . \tag{37}
\end{gather*}
$$

3.2 Properties of Trilinear Form

A trilinear continuous form b has the following properties:

$$
\begin{align*}
& \mathrm{b}(\mathrm{u}, \mathrm{v}, \mathrm{w})=-\mathrm{b}(\mathrm{u}, \mathrm{w}, \mathrm{v}), \forall \mathrm{u}, \mathrm{v}, \mathrm{w} \in \mathrm{~V} \tag{38}\\
& \mathrm{~b}(\mathrm{u}, \mathrm{v}, \mathrm{v})=0, \forall \mathrm{u}, \mathrm{v} \in \mathrm{~V} \tag{39}
\end{align*}
$$

For u, v in V, we denote by $B(u, v)$ the element of V^{\prime} defined by

$$
\begin{equation*}
\langle\mathrm{B}(\mathrm{u}, \mathrm{v}), \mathrm{w}\rangle=\mathrm{b}(\mathrm{u}, \mathrm{v}, \mathrm{w}), \forall \mathrm{w} \in \mathrm{~V}, \tag{40}
\end{equation*}
$$

and we set

$$
\begin{equation*}
\mathrm{B}(\mathrm{u})=\mathrm{B}(\mathrm{u}, \mathrm{u}) \in \mathrm{V}^{\prime}, \forall \mathrm{u} \in \mathrm{~V} . \tag{41}
\end{equation*}
$$

3.3 Lemma

We assume that the dimension of the space is $n \leq 4$ and that u belongs to $L^{2}(0, T ; V)$. Then the function Bu defined by

$$
\langle\operatorname{Bu}(\mathrm{t}), \mathrm{v}\rangle=\mathrm{b}(\mathrm{u}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{v}), \forall \mathrm{v} \in \mathrm{~V}, \text { a.e.in } \mathrm{t} \in[0, \mathrm{~T}],
$$

belongs to $\mathrm{L}^{1}\left(0, \mathrm{~T} ; \mathrm{V}^{\prime}\right)$.

Proof

For almost all $\mathrm{t}, \mathrm{Bu}(\mathrm{t})$ is an element of V^{\prime}, and the function
$\mathrm{Bu}: \mathrm{t} \in[0, \mathrm{~T}] \rightarrow \mathrm{Bu}(\mathrm{t}) \in \mathrm{V}^{\prime}$ is measurable. Moreover, since b is trilinear continuous on V ,

$$
\begin{equation*}
\|\mathrm{Bw}\|_{\mathrm{v}^{\prime}} \leq \mathrm{c}\|\mathrm{w}\|^{2}, \forall \mathrm{w} \in \mathrm{~V} \tag{42}
\end{equation*}
$$

so that

$$
\int_{0}^{\mathrm{T}}\|\mathrm{Bu}(\mathrm{t})\|_{\mathrm{v}^{\prime}} \mathrm{dt} \leq \mathrm{c} \int_{0}^{\mathrm{T}}\|\mathrm{u}(\mathrm{t})\|^{2} \mathrm{dt}<+\infty
$$

Therefore the function Bu is bounded in $\mathrm{L}^{1}\left(0, \mathrm{~T} ; \mathrm{V}^{\prime}\right)$.
If u satisfies (35)-(36), then by (6), (8), and the above lemma one can write (36) as

$$
\frac{\mathrm{d}}{\mathrm{dt}}\langle\mathrm{u}, \mathrm{v}\rangle=\langle\mathrm{f}-\mathrm{vAu}-\mathrm{Bu}, \mathrm{v}\rangle, \forall \mathrm{v} \in \mathrm{~V}
$$

Yadanabon University Research Journal, 2019, Vol-10, No. 1
Since A is linear and continuous from V into V^{\prime} and $u \in L^{2}(V)$, therefore the function Au belongs to $\mathrm{L}^{2}\left(0, \mathrm{~T} ; \mathrm{V}^{\prime}\right)$, the function $\mathrm{f}-\mathrm{vAu}-\mathrm{Bu}$ belongs to $\mathrm{L}^{1}\left(0, \mathrm{~T} ; \mathrm{V}^{\prime}\right)$. Lemma 1.5 implies then that

$$
\left.\begin{array}{l}
\mathrm{u}^{\prime} \in \mathrm{L}^{1}\left(0, \mathrm{~T} ; \mathrm{V}^{\prime}\right) \tag{43}\\
\mathrm{u}^{\prime}=\mathrm{f}-\mathrm{vAu}-\mathrm{Bu}
\end{array}\right\}
$$

and that u is almost everywhere equal to a continuous function from $[0, \mathrm{~T}]$ into V^{\prime}. This makes (37) meaningful.

An alternate formulation of the problem (35)-(37) is:

3.4 Problem

Given f and u_{0} satisfying (33)-(34), to find u satisfying

$$
\begin{align*}
& \mathrm{u} \in \mathrm{~L}^{2}(0, \mathrm{~T} ; \mathrm{V}), \mathrm{u}^{\prime} \in \mathrm{L}^{1}\left(0, \mathrm{~T} ; \mathrm{V}^{\prime}\right), \tag{44}\\
& \mathrm{u}^{\prime}+\mathrm{vAu}+\mathrm{Bu}=\mathrm{f} \text { on }(0, \mathrm{~T}), \tag{45}\\
& \mathrm{u}(0)=\mathrm{u}_{0} . \tag{46}
\end{align*}
$$

We showed that any solution of problem (3.1) is a solution of problem (3.4); these problems are equivalent.

The existence of solutions of these problems is ensured by the following theorem.

4. EXISTENCE RESULT

4.1 Theorem

Let the dimension n be less than or equal to 4 . Let there be given f and u_{0} which satisfy (33)-(34). Then there exists at least one function u which satisfies (44)-(46). Moreover,

$$
\begin{equation*}
\mathrm{u} \in \mathrm{~L}^{\infty}(0, \mathrm{~T} ; \mathrm{H}) \tag{47}
\end{equation*}
$$

Proof
(i) We apply the Galerkin procedure. Since V is separable and V is dense in V , there exists a sequence $w_{1}, \ldots, w_{m}, \ldots$ of elements of V , which is free and total in V . For each m , we define an approximate solution u_{m} of (36) as follows:

$$
\begin{equation*}
\mathrm{u}_{\mathrm{m}}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{~g}_{\mathrm{im}}(\mathrm{t}) \mathrm{w}_{\mathrm{i}} \tag{48}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(\mathrm{u}_{\mathrm{m}}^{\prime}(\mathrm{t}), \mathrm{w}_{\mathrm{j}}\right)+\mathrm{v}\left(\left(\mathrm{u}_{\mathrm{m}}(\mathrm{t}), \mathrm{w}_{\mathrm{j}}\right)\right)+\mathrm{b}\left(\mathrm{u}_{\mathrm{m}}(\mathrm{t}), \mathrm{u}_{\mathrm{m}}(\mathrm{t}), \mathrm{w}_{\mathrm{j}}\right)=\left\langle\mathrm{f}(\mathrm{t}), \mathrm{w}_{\mathrm{j}}\right\rangle, \\
& \mathrm{t} \in[0, \mathrm{~T}], \mathrm{j}=1, \ldots, \mathrm{~m}, \tag{49}\\
& \mathrm{u}_{\mathrm{m}}(0)=\mathrm{u}_{0 \mathrm{~m}}, \tag{50}
\end{align*}
$$

where $\mathrm{u}_{0 \mathrm{~m}}$ is the orthogonal projection in H of u_{0} onto the space spanned by $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{m}}$. The equation (49) forms a nonlinear differential system for the functions $g_{1 m}, \ldots, g_{m m}$:

$$
\begin{align*}
& \sum_{\mathrm{i}=1}^{\mathrm{m}}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}}\right) \mathrm{g}_{\mathrm{im}}^{\prime}(\mathrm{t})+v \sum_{\mathrm{i}=1}^{\mathrm{m}}\left(\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}}\right)\right) \mathrm{g}_{\mathrm{im}}(\mathrm{t}) \\
& \quad+\sum_{\mathrm{i}, \mathrm{l}=1}^{\mathrm{m}} \mathrm{~b}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{1}, \mathrm{w}_{\mathrm{j}}\right) \mathrm{g}_{\mathrm{im}}(\mathrm{t}) \mathrm{g}_{\mathrm{lm}}(\mathrm{t})=\left\langle\mathrm{f}(\mathrm{t}), \mathrm{w}_{\mathrm{j}}\right\rangle, \mathrm{j}=1, \ldots, \mathrm{~m} . \tag{51}
\end{align*}
$$

Inverting the nonsingular matrix with elements $\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}}\right), 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{m}$, we can write the differential equations in the usual form

Yadanabon University Research Journal, 2019, Vol-10, No. 1

$$
\begin{equation*}
g_{i m}^{\prime}(\mathrm{t})+\sum_{\mathrm{j}=1}^{\mathrm{m}} \alpha_{\mathrm{ij}} \mathrm{~g}_{\mathrm{jm}}(\mathrm{t})+\sum_{\mathrm{j}, \mathrm{k}=1}^{\mathrm{m}} \alpha_{\mathrm{ijk}} \mathrm{~g}_{\mathrm{jm}}(\mathrm{t}) \mathrm{g}_{\mathrm{km}}(\mathrm{t})=\sum_{\mathrm{j}=1}^{\mathrm{m}} \beta_{\mathrm{ij}}\left\langle\mathrm{f}(\mathrm{t}), \mathrm{w}_{\mathrm{j}}\right\rangle, \tag{52}
\end{equation*}
$$

where $\alpha_{\mathrm{ij}}, \alpha_{\mathrm{ijk}}, \beta_{\mathrm{ij}} \in \mathrm{R}$.
The condition (50) is equivalent to the m scalar initial conditions

$$
\begin{equation*}
\mathrm{g}_{\mathrm{im}}(0)=\text { the } \mathrm{i}^{\text {th }} \text { component of } \mathrm{u}_{0 \mathrm{~m}} \text {. } \tag{53}
\end{equation*}
$$

The nonlinear differential system (52) with the initial condition (53) has a maximal solution defined on some interval $\left[0, \mathrm{t}_{\mathrm{m}}\right]$. If $\mathrm{t}_{\mathrm{m}}<\mathrm{T}$, then $\left|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right|$ must tend to $+\infty$ as $\mathrm{t} \rightarrow \mathrm{t}_{\mathrm{m}}$; the priori estimates we shall prove that this does not happen and therefore $\mathrm{t}_{\mathrm{m}}=\mathrm{T}$.
(ii) We multiply (49) by $g_{j m}(t)$ and add these equations for $j=1, \ldots, m$.

Taking (39) into account, we get

$$
\begin{align*}
\left(\mathrm{u}_{\mathrm{m}}^{\prime}(\mathrm{t}), \mathrm{u}_{\mathrm{m}}(\mathrm{t})\right)+v\left\|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right\|^{2} & =\left\langle\mathrm{f}(\mathrm{t}), \mathrm{u}_{\mathrm{m}}(\mathrm{t})\right\rangle, \\
& \leq 2\|\mathrm{f}(\mathrm{t})\|_{\mathrm{v}^{\prime}}\left\|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right\| . \tag{54}
\end{align*}
$$

By using Young's inequality, we have

$$
\begin{equation*}
\left(\mathrm{u}_{\mathrm{m}}^{\prime}(\mathrm{t}), \mathrm{u}_{\mathrm{m}}(\mathrm{t})\right)+v\left\|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right\|^{2} \leq 2\left[\frac{v}{2}\left\|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right\|^{2}+\frac{1}{2 v}\|\mathrm{f}(\mathrm{t})\|_{\mathrm{v}^{\prime}}^{2}\right] \tag{55}
\end{equation*}
$$

And so $\quad \frac{\mathrm{d}}{\mathrm{dt}}\left|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right|^{2}+v\left\|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right\|^{2} \leq \frac{1}{v}\|\mathrm{f}(\mathrm{t})\|_{\mathrm{v}^{\prime}}^{2}$.
Integrating (55) from 0 to s , we obtain in particular,

$$
\int_{0}^{\mathrm{s}} \frac{\mathrm{~d}}{\mathrm{dt}}\left|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right|^{2} \mathrm{dt}+\int_{0}^{\mathrm{s}} v\left\|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right\|^{2} \mathrm{dt} \leq \int_{0}^{\mathrm{s}} \frac{1}{v}\|\mathrm{f}(\mathrm{t})\|_{\mathrm{v}^{\prime}}^{2} \mathrm{dt} .
$$

Then

$$
\left|\mathrm{u}_{\mathrm{m}}(\mathrm{~s})\right|^{2} \leq\left|\mathrm{u}_{\mathrm{m}}(0)\right|^{2}+\frac{1}{v} \int_{0}^{\mathrm{s}}\|\mathrm{f}(\mathrm{t})\|_{\mathrm{v}^{\prime}}^{2} \mathrm{dt}
$$

Hence

$$
\begin{equation*}
\sup _{\mathrm{s} \in[0, \mathrm{~T}]}\left|\mathrm{u}_{\mathrm{m}}(\mathrm{~s})\right|^{2} \leq\left|\mathrm{u}_{0}\right|^{2}+\frac{1}{v} \int_{0}^{\mathrm{T}}\|\mathrm{f}(\mathrm{t})\|_{\mathrm{v}^{\prime}}^{2} \mathrm{dt} \tag{56}
\end{equation*}
$$

which implies that
the sequence u_{m} remains in a bounded set of $L^{\infty}(0, T ; H)$.
Then we integrate (55) from 0 to T to get

$$
\begin{align*}
\left|\mathrm{u}_{\mathrm{m}}(\mathrm{~T})\right|^{2}+v \int_{0}^{\mathrm{T}}\left\|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right\|^{2} \mathrm{dt} & \leq\left|\mathrm{u}_{0 \mathrm{~m}}\right|^{2}+\frac{1}{v} \int_{0}^{\mathrm{T}}\|\mathrm{f}(\mathrm{t})\|_{\mathrm{v}^{\prime}}^{2} \mathrm{dt} \tag{57}\\
& \leq\left|\mathrm{u}_{0}\right|^{2}+\frac{1}{v} \int_{0}^{\mathrm{T}}\|\mathrm{f}(\mathrm{t})\|_{\mathrm{v}^{\prime}}^{2} \mathrm{dt} . \tag{58}
\end{align*}
$$

Therefore the sequence u_{m} remains in a bounded set of $L^{2}(0, T ; V)$.
(iii) Let $\tilde{\mathrm{u}}_{\mathrm{m}}$ denote the function from R into V which is equal to u_{m} on $[0, \mathrm{~T}]$ and to 0 on the complement of this interval. The Fourier transform of $\tilde{\mathrm{u}}_{\mathrm{m}}$ is denoted by $\hat{\mathrm{u}}_{\mathrm{m}}$.

We want to show that

$$
\begin{equation*}
\int_{-\infty}^{+\infty}|\tau|^{2 \gamma}\left|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right|^{2} \mathrm{~d} \tau \leq \text { const. , for some } \gamma>0 \text {. } \tag{59}
\end{equation*}
$$

Along with (58), this will imply that

$$
\begin{equation*}
\tilde{\mathrm{u}}_{\mathrm{m}} \text { belongs to a bounded set of } \mathscr{H}^{\gamma}(\mathrm{R} ; \mathrm{V}, \mathrm{H}) \tag{60}
\end{equation*}
$$

and will enable us to apply the compactness result of Theorem 1.8.

Yadanabon University Research Journal, 2019, Vol-10, No. 1
In order to prove (59) we observe that (49) can be written

$$
\begin{aligned}
\left(\mathrm{u}_{\mathrm{m}}^{\prime}(\mathrm{t}), \mathrm{w}_{\mathrm{j}}\right) & =\left\langle\mathrm{f}-v \mathrm{Au}_{\mathrm{m}}-\mathrm{Bu}_{\mathrm{m}}, \mathrm{w}_{\mathrm{j}}\right\rangle \\
& =\left\langle\mathrm{f}_{\mathrm{m}}, \mathrm{w}_{\mathrm{j}}\right\rangle,
\end{aligned}
$$

where $\tilde{f}_{m}=f_{m}$ on $[0, T], 0$ outside this interval. By Lemma (1.5), each function u_{m} is after modification on a set of measure 0 , continuous from $[0, T]$ into H . It is classical that since $\tilde{\mathrm{u}}_{\mathrm{m}}$ has two discontinuous at 0 and T, the distribution derivative of $\tilde{\mathrm{u}}_{\mathrm{m}}$ is given by

$$
\frac{\mathrm{d} \tilde{\mathrm{u}}_{\mathrm{m}}}{\mathrm{dt}}=\tilde{\mathrm{g}}_{\mathrm{m}}+\mathrm{u}_{\mathrm{m}}(0) \delta_{0}-\mathrm{u}_{\mathrm{m}}(\mathrm{~T}) \delta_{\mathrm{T}},
$$

where $\delta_{0}, \delta_{\mathrm{T}}$ are Dirac distributions at 0 and T and

$$
\begin{array}{r}
\mathrm{g}_{\mathrm{m}}=\mathrm{u}_{\mathrm{m}}^{\prime}=\text { the derivative of } \mathrm{u}_{\mathrm{m}} \text { on }[0, \mathrm{~T}] . \\
\frac{\mathrm{d}}{\mathrm{dt}}\left(\tilde{\mathrm{u}}_{\mathrm{m}}, \mathrm{w}_{\mathrm{j}}\right)=\left\langle\tilde{\mathrm{f}}_{\mathrm{m}}, \mathrm{w}_{\mathrm{j}}\right\rangle+\left(\mathrm{u}_{0 \mathrm{~m}}, \mathrm{w}_{\mathrm{j}}\right) \delta_{0}-\left(\mathrm{u}_{\mathrm{m}}(\mathrm{~T}), \mathrm{w}_{\mathrm{j}}\right) \delta_{\mathrm{T}}, \mathrm{j}=1, \ldots, \mathrm{~m} . \tag{61}
\end{array}
$$

By the Fourier transform, we have

$$
\begin{aligned}
\left(\int_{-\infty}^{\infty} \mathrm{e}^{-2 \pi \mathrm{itt}} \frac{\mathrm{~d} \tilde{\mathrm{u}}_{\mathrm{m}}}{\mathrm{dt}} \mathrm{dt}, \mathrm{w}_{\mathrm{j}}\right)= & \left\langle\int_{-\infty}^{\infty} \tilde{\mathrm{f}}_{\mathrm{m}} \mathrm{e}^{-2 \pi \mathrm{itt}} \mathrm{dt}, \mathrm{w}_{\mathrm{j}}\right\rangle+\left(\int_{-\infty}^{\infty} \mathrm{u}_{\mathrm{m}}(0) \delta_{0} \mathrm{e}^{-2 \pi \mathrm{itt}} \mathrm{dt}, \mathrm{w}_{\mathrm{j}}\right) \\
& -\left(\int_{-\infty}^{\infty} \mathrm{u}_{\mathrm{m}}(\mathrm{~T}) \delta_{\mathrm{T}} \mathrm{e}^{-2 \pi \mathrm{it} \tau} \mathrm{dt}, \mathrm{w}_{\mathrm{j}}\right) .
\end{aligned}
$$

Then
$\left(\mathrm{e}^{-2 \pi \mathrm{i} \tau} \tau \mathbf{u}_{\mathrm{m}}(\mathrm{T}), \mathrm{w}_{\mathrm{j}}\right)-\left(\mathrm{u}_{\mathrm{m}}(0), \mathrm{w}_{\mathrm{j}}\right)+2 \pi \mathrm{i} \tau\left(\int_{-\infty}^{\infty} \mathrm{e}^{-2 \pi \mathrm{it} \tau} \tilde{\mathrm{u}}_{\mathrm{m}} \mathrm{dt}, \mathrm{w}_{\mathrm{j}}\right)=\left\langle\int_{-\infty}^{\infty} \tilde{\mathrm{f}}_{\mathrm{m}} \mathrm{e}^{-2 \pi \mathrm{it} \tau} \mathrm{dt}, \mathrm{w}_{\mathrm{j}}\right\rangle$. Therefore $\left(\mathrm{e}^{-2 \pi \mathrm{i} \tau} \mathrm{u}_{\mathrm{m}}(\mathrm{T}), \mathrm{w}_{\mathrm{j}}\right)-\left(\mathrm{u}_{\mathrm{m}}(0), \mathrm{w}_{\mathrm{j}}\right)+2 \pi \mathrm{i} \tau\left(\hat{\mathrm{u}}_{\mathrm{m}}, \mathrm{w}_{\mathrm{j}}\right)=\left\langle\hat{\mathrm{f}}_{\mathrm{m}}, \mathrm{w}_{\mathrm{j}}\right\rangle$.
Hence $\quad 2 \pi \mathrm{i} \tau\left(\hat{\mathrm{u}}_{\mathrm{m}}, \mathrm{w}_{\mathrm{j}}\right)=\left\langle\hat{\mathrm{f}}_{\mathrm{m}}, \mathrm{w}_{\mathrm{j}}\right\rangle+\left(\mathrm{u}_{0 \mathrm{~m}}, \mathrm{w}_{\mathrm{j}}\right)-\left(\mathrm{u}_{\mathrm{m}}(\mathrm{T}), \mathrm{w}_{\mathrm{j}}\right) \mathrm{e}^{-2 \pi \mathrm{i} \tau \tau}$,
$\hat{\mathrm{u}}_{\mathrm{m}}$ and $\hat{\mathrm{f}}_{\mathrm{m}}$ denoting the Fourier transforms of $\tilde{\mathrm{u}}_{\mathrm{m}}$ and $\tilde{\mathrm{f}}_{\mathrm{m}}$ respectively.
We multiply (62) by $\hat{\mathrm{g}}_{\mathrm{jm}}(\tau)$ (= Fourier transform of $\tilde{\mathrm{g}}_{\mathrm{jm}}$) and add the resulting equations for $\mathrm{j}=1, \ldots, \mathrm{~m}$; we get

$$
\begin{align*}
2 \mathrm{i} \pi \tau\left|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right|^{2} & =\left\langle\hat{\mathrm{f}}_{\mathrm{m}}(\tau), \hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right\rangle+\left(\mathrm{u}_{0 \mathrm{~m}}, \hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right)-\left(\mathrm{u}_{\mathrm{m}}(\mathrm{~T}), \hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right) \mathrm{e}^{-2 \mathrm{i} \pi \mathrm{~T} \tau} . \tag{63}\\
\int_{0}^{\mathrm{T}}\left\|\mathrm{f}_{\mathrm{m}}(\mathrm{t})\right\|_{\mathrm{v}^{\prime}} \mathrm{dt} & =\int_{0}^{\mathrm{T}}\left\|\mathrm{f}(\mathrm{t})-v \mathrm{Au}_{\mathrm{m}}-\mathrm{Bu}_{\mathrm{m}}\right\|_{\mathrm{V}^{\prime}}, \\
& \leq \int_{0}^{\mathrm{T}}\left(\|\mathrm{f}(\mathrm{t})\|_{\mathrm{v}^{\prime}}+v\left\|\mathrm{Au}_{\mathrm{m}}(\mathrm{t})\right\|_{\mathrm{V}^{\prime}}+\left\|\mathrm{Bu}_{\mathrm{m}}(\mathrm{t})\right\|_{\mathrm{v}^{\prime}}\right) \mathrm{dt} .
\end{align*}
$$

By (42), we have

$$
\int_{0}^{\mathrm{T}}\left\|\mathrm{f}_{\mathrm{m}}(\mathrm{t})\right\|_{\mathrm{V}^{\prime}} \mathrm{dt} \leq \int_{0}^{\mathrm{T}}\left(\|\mathrm{f}(\mathrm{t})\|_{\mathrm{V}^{\prime}}+v\left\|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right\|+\mathrm{c}_{1}\left\|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right\|^{2}\right) \mathrm{dt}
$$

Since the sequence u_{m} remains in a bounded set of $L^{2}(0, T ; V)$, the sequence f_{m} is in a bounded set of $L^{1}\left(0, T ; V^{\prime}\right)$.i.e.,

Yadanabon University Research Journal, 2019, Vol-10, No. 1

$$
\sup _{\tau \in \mathbb{R}}\left\|\hat{\mathrm{f}}_{\mathrm{m}}(\tau)\right\|_{\mathrm{v}^{\prime}} \leq \mathrm{c}_{2} \forall \mathrm{~m} .
$$

By (56), we have

$$
\left|u_{m}(0)\right| \leq c_{3},\left|u_{m}(T)\right| \leq c_{3}^{*} .
$$

From (63), we obtain

$$
\begin{align*}
2 \pi \mathrm{i}|\tau|\left|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right|^{2} & \leq\left\|\hat{\mathrm{f}}_{\mathrm{m}}(\tau)\right\|_{\mathrm{V}^{\prime}}\left\|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right\|+\left|\mathrm { u } _ { \mathrm { m } } (0) \left\|\hat { \mathrm { u } } _ { \mathrm { m } } (\tau) \left|+\left|\mathrm{u}_{\mathrm{m}}(\mathrm{~T}) \| \hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right|\right.\right.\right. \\
& \leq \mathrm{c}_{4}\left\|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right\| \text { where } \mathrm{c}_{4}=\mathrm{c}_{2}+\mathrm{c}_{3}+\mathrm{c}_{3}^{*} . \tag{64}
\end{align*}
$$

For fixed $\gamma<\frac{1}{4}$, we observe that

$$
|\tau|^{2 \gamma} \leq \mathrm{c}_{5}(\gamma) \frac{1+|\tau|}{1+|\tau|^{1-2 \gamma}}, \forall \tau \in \mathrm{R} .
$$

Thus

$$
\begin{aligned}
\int_{-\infty}^{+\infty}|\tau|^{2 \gamma}\left|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right|^{2} \mathrm{~d} \tau & \leq \mathrm{c}_{5}(\gamma) \int_{-\infty}^{+\infty} \frac{1+|\tau|}{1+|\tau|^{1-2 \gamma}}\left|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right|^{2} \mathrm{~d} \tau \\
& =\mathrm{c}_{5}(\gamma)\left[\int_{-\infty}^{+\infty} \frac{\left|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right|^{2}}{1+|\tau|^{1-2 \gamma}} \mathrm{~d} \tau+\int_{-\infty}^{+\infty} \frac{|\tau|\left|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right|^{2}}{1+|\tau|^{1-2 \gamma}} \mathrm{~d} \tau\right] .
\end{aligned}
$$

By (64), we have

$$
\begin{equation*}
\int_{-\infty}^{+\infty}|\tau|^{2 \gamma}\left|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right|^{2} \mathrm{~d} \tau \leq \mathrm{c}_{6} \int_{-\infty}^{+\infty} \frac{\left\|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right\|}{1+|\tau|^{1-2 \gamma}} \mathrm{~d} \tau+\mathrm{c}_{7} \int_{-\infty}^{+\infty}\left\|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right\|^{2} \mathrm{~d} \tau . \tag{65}
\end{equation*}
$$

By the Parseval equality and (58), the last integral of (65) is bounded as $m \rightarrow \infty$. i.e.,

$$
\begin{equation*}
\mathrm{c}_{7} \int_{-\infty}^{+\infty}\left\|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right\|^{2} \mathrm{dt}=\mathrm{c}_{7} \int_{0}^{\mathrm{T}}\left\|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right\|^{2} \mathrm{dt} \leq \mathrm{c}_{8} . \tag{66}
\end{equation*}
$$

By the Cauchy Schwarz inequality, the first integral on the right hand side of (65) becomes

$$
\mathrm{c}_{6} \int_{-\infty}^{+\infty} \frac{\left\|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right\|}{1+|\tau|^{1-2 \gamma}} \mathrm{~d} \tau \leq \mathrm{c}_{6}\left(\int_{-\infty}^{+\infty} \frac{1}{\left(1+|\tau|^{1-2 \gamma}\right)^{2}} \mathrm{~d} \tau\right)^{\frac{1}{2}}\left(\int_{-\infty}^{\infty}\left\|\hat{\mathrm{u}}_{\mathrm{m}}(\mathrm{t})\right\|^{2} \mathrm{dt}\right)^{\frac{1}{2}} .
$$

By the Parseval equality, we have

$$
\mathrm{c}_{6} \int_{-\infty}^{+\infty} \frac{\left\|\hat{\mathrm{u}}_{\mathrm{m}}(\tau)\right\|}{1+|\tau|^{1-2 \gamma}} \mathrm{~d} \tau \leq \mathrm{c}_{6}\left(\int_{-\infty}^{+\infty} \frac{1}{\left(1+|\tau|^{1-2 \gamma}\right)^{2}} \mathrm{~d} \tau\right)^{\frac{1}{2}}\left(\int_{0}^{\mathrm{T}}\left\|\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right\|^{2} \mathrm{dt}\right)^{\frac{1}{2}}
$$

which is finite since $\gamma<\frac{1}{4}$ and bounded as $\mathrm{m} \rightarrow \infty$ by (58). Therefore, (59) is proved. i.e.,

$$
\mathrm{D}_{\mathrm{t}}^{\gamma} \tilde{\mathrm{u}}_{\mathrm{m}} \in \mathrm{~L}^{2}(\mathrm{R} ; \mathrm{H})
$$

Since the sequence $\tilde{\mathrm{u}}_{\mathrm{m}}$ is bounded in $\mathrm{L}^{2}(\mathrm{R} ; \mathrm{V}), \tilde{\mathrm{u}}_{\mathrm{m}}$ belongs to a bounded set of $\mathscr{H}^{\gamma}(\mathrm{R} ; \mathrm{V}, \mathrm{H})$.
(iv) The estimates (57) and (58) enable us to assert the existence of an element $u \in L^{2}(0, T ; V) \cap L^{\infty}(0, T ; H)$ and a sub-sequence $u_{m^{\prime}}$ such that

$$
\left.\begin{array}{l}
\mathrm{u}_{\mathrm{m}^{\prime}} \rightarrow \text { u in } \mathrm{L}^{2}(0, \mathrm{~T} ; \mathrm{V}) \text { weakly, and in } \tag{66}\\
\mathrm{L}^{\infty}(0, \mathrm{~T} ; \mathrm{H}) \text { weak-star, as } \mathrm{m}^{\prime} \rightarrow \infty .
\end{array}\right\}
$$

Yadanabon University Research Journal, 2019, Vol-10, No. 1
By (60) and Theorem (1.8), we have

$$
\begin{equation*}
\mathrm{u}_{\mathrm{m}^{\prime}} \rightarrow \mathrm{uin} \mathrm{~L}^{2}(0, \mathrm{~T} ; \mathrm{H}) \text { strongly. } \tag{67}
\end{equation*}
$$

The convergence results (66) and (67) enable us to pass to the limit.
Let ψ be a continuously differentiable function on $[0, \mathrm{~T}]$ with $\psi(\mathrm{T})=0$. We multiply (49) by $\psi(t)$ and integrate by parts, then we get

$$
\begin{align*}
& \int_{0}^{\mathrm{T}}\left(\mathrm{u}_{\mathrm{m}}^{\prime}(\mathrm{t}), \mathrm{w}_{\mathrm{j}}\right) \psi(\mathrm{t}) \mathrm{dt}+\int_{0}^{\mathrm{T}} v\left(\mathrm{u}_{\mathrm{m}}(\mathrm{t}), \mathrm{w}_{\mathrm{j}}\right) \psi(\mathrm{t}) \mathrm{dt}+\int_{0}^{\mathrm{T}} \mathrm{~b}\left(\mathrm{u}_{\mathrm{m}}(\mathrm{t}), \mathrm{u}_{\mathrm{m}}(\mathrm{t}), \mathrm{w}_{\mathrm{j}}\right) \psi(\mathrm{t}) \mathrm{dt} \\
& =\int_{0}^{\mathrm{T}}\left\langle\mathrm{f}(\mathrm{t}), \mathrm{w}_{\mathrm{j}}\right\rangle \psi(\mathrm{t}) \mathrm{dt}, \\
& -\int_{0}^{\mathrm{T}}\left(\mathrm{u}_{\mathrm{m}}(\mathrm{t}), \psi^{\prime}(\mathrm{t}) \mathrm{w}_{\mathrm{j}}\right) \mathrm{dt}+\int_{0}^{\mathrm{T}} \int_{0}^{\mathrm{T}}\left(\left(\mathrm{u}_{\mathrm{m}}(\mathrm{t}), \mathrm{w}_{\mathrm{j}} \psi(\mathrm{t})\right)\right) \mathrm{dt}+\int_{0}^{\mathrm{T}} \mathrm{~b}\left(\mathrm{u}_{\mathrm{m}}(\mathrm{t}), \mathrm{u}_{\mathrm{m}}(\mathrm{t}), \mathrm{w}_{\mathrm{j}} \psi(\mathrm{t})\right) \mathrm{dt} \\
& =\left(\mathrm{u}_{\mathrm{om}}, \mathrm{w}_{\mathrm{j}}\right) \psi(0)+\int_{0}^{\mathrm{T}}\left\langle\mathrm{f}(\mathrm{t}), \mathrm{w}_{\mathrm{j}} \psi(\mathrm{t})\right\rangle \mathrm{dt} . \tag{68}
\end{align*}
$$

For the nonlinear term, we have

$$
\begin{aligned}
\int_{0}^{\mathrm{T}} \mathrm{~b}\left(\mathrm{u}_{\mathrm{m}}(\mathrm{t}), \mathrm{u}_{\mathrm{m}}(\mathrm{t}), \mathrm{w}_{\mathrm{j}} \psi(\mathrm{t})\right) \mathrm{dt} & =-\int_{0}^{\mathrm{T}} \mathrm{~b}\left(\mathrm{u}_{\mathrm{m}}(\mathrm{t}), \mathrm{w}_{\mathrm{j}} \psi(\mathrm{t}), \mathrm{u}_{\mathrm{m}}(\mathrm{t})\right) \mathrm{dt} \\
& =-\sum_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{n}} \int_{0}^{\mathrm{T}} \int_{\Omega}\left(\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right)_{\mathrm{i}}\left(\mathrm{w}_{\mathrm{j}} \mathrm{D}_{\mathrm{i}} \psi_{\mathrm{j}}(\mathrm{t})\right)\left(\mathrm{u}_{\mathrm{m}}(\mathrm{t})\right)_{\mathrm{j}} \mathrm{dxdt} .
\end{aligned}
$$

These integrals converge to

$$
\begin{aligned}
-\sum_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{n}} \int_{0}^{\mathrm{T}} \int_{\Omega}(\mathrm{u}(\mathrm{t}))_{\mathrm{i}}\left(\mathrm{w}_{\mathrm{j}} \mathrm{D}_{\mathrm{i}} \psi_{\mathrm{j}}(\mathrm{t})\right)(\mathrm{u}(\mathrm{t}))_{\mathrm{j}} \mathrm{dxdt} & =-\int_{0}^{\mathrm{T}} \mathrm{~b}(\mathrm{u}(\mathrm{t}), \mathrm{v} \psi(\mathrm{t}), \mathrm{u}(\mathrm{t})) \mathrm{dt} \\
& =\int_{0}^{\mathrm{T}} \mathrm{~b}(\mathrm{u}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{v} \psi(\mathrm{t})) \mathrm{dt} .
\end{aligned}
$$

In the limit we find that the equation

$$
\begin{align*}
& -\int_{0}^{\mathrm{T}}\left(\mathrm{u}(\mathrm{t}), \mathrm{v} \psi^{\prime}(\mathrm{t})\right) \mathrm{dt}+\mathrm{v} \int_{0}^{\mathrm{T}}((\mathrm{u}(\mathrm{t}), \mathrm{v} \psi(\mathrm{t}))) \mathrm{dt}+\int_{0}^{\mathrm{T}} \mathrm{~b}(\mathrm{u}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{v} \psi(\mathrm{t})) \mathrm{dt} \\
& =\left(\mathrm{u}_{0}, \mathrm{v}\right) \psi(0)+\int_{0}^{\mathrm{T}}\langle\mathrm{f}(\mathrm{t}), \mathrm{v} \psi(\mathrm{t})\rangle \mathrm{dt}, \tag{69}
\end{align*}
$$

holds for $\mathrm{v}=\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots$, by linearity this equation holds for $\mathrm{v}=$ any finite linear combination of the w_{j} and by a continuity argument (69) is still true for any $v \in V$.

By writing, in particular, (69) with $\psi=\phi \in \mathscr{D}((0, T))$, u satisfies (36) in the distribution sense.

Finally, it remains to prove that u satisfies (37). For this, we multiply (36) by ψ, and integrate. After integrating the first term by parts, we get

$$
\begin{aligned}
& {[(\mathrm{u}(\mathrm{t}) \psi(\mathrm{t}), \mathrm{v})]_{0}^{\mathrm{T}}-\int_{0}^{\mathrm{T}}(\mathrm{u}(\mathrm{t}), \mathrm{v}) \psi^{\prime}(\mathrm{t}) \mathrm{dt}+\mathrm{v} \int_{0}^{\mathrm{T}}((\mathrm{u}(\mathrm{t}), \mathrm{v} \psi(\mathrm{t}))) \mathrm{dt}} \\
& +\int_{0}^{\mathrm{T}} \mathrm{~b}(\mathrm{u}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{v} \psi(\mathrm{t})) \mathrm{dt}
\end{aligned}
$$

Yadanabon University Research Journal, 2019, Vol-10, No. 1

$$
\begin{aligned}
& =\int_{0}^{\mathrm{T}}\langle\mathrm{f}(\mathrm{t}), \mathrm{v} \psi(\mathrm{t})\rangle \mathrm{dt} \\
& -\int_{0}^{\mathrm{T}}\left(\mathrm{u}(\mathrm{t}), \mathrm{v} \psi^{\prime}(\mathrm{t})\right) \mathrm{dt}+\mathrm{v} \int_{0}^{\mathrm{T}}((\mathrm{u}(\mathrm{t}), \mathrm{v} \psi(\mathrm{t}))) \mathrm{dt}+\int_{0}^{\mathrm{T}} \mathrm{~b}(\mathrm{u}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{v} \psi(\mathrm{t})) \mathrm{dt} \\
& =(\mathrm{u}(0), \mathrm{v}) \psi(0)+\int_{0}^{\mathrm{T}}\langle\mathrm{f}(\mathrm{t}), \mathrm{v} \psi(\mathrm{t})\rangle \mathrm{dt} .
\end{aligned}
$$

By comparison with (69),

$$
\left(\mathrm{u}(0)-\mathrm{u}_{0}, \mathrm{v}\right) \psi(0)=0 .
$$

By choosing ψ with $\psi(0)=1$, we obtain

$$
\left(\mathrm{u}(0)-\mathrm{u}_{0}, \mathrm{v}\right)=0, \forall \mathrm{v} \in \mathrm{~V}
$$

Therefore $\quad u(0)=u_{0}$.

Acknowledgements

I would like to express my heartfelt gratitude to Dr Maung Maung Naing, Rector, Dr Si Si Khin, Pro-Rector and Dr Tint Moe Thuzar, Pro-Rector, Yadanabon University for their permission to carry out the research and their encouragement. And then, I would like to thank Dr Win Kyaw, Professor and Head of Department of Mathematics, Dr Hla Win, Professor, Department of Mathematics and Dr Nan Mya Ngwe, Professor, Department of Mathematics, Yadanabon University, for their exhortation and helpful comments on this research.

References

[1] Adams, R. A., Sobolev Spaces, Academic Press, New York, 1975.
[2] Evans, L. C., Partial Differential Equations, AMS, Providence, 1998.
[3] Girault, V. and Raviart, P-A., Finite Element Methods for Navier-Stokes Equation. Theory and Algorithms, Springer-Verlag, New York, 1986.
[4] Quarteroni, A. and Valli, A., Numerical Approximation of Partial Differential Equations, second corrected printing, Springer-Verlag, Berlin/Heidelberg, 1997.
[5] Süli, E., Finite Element Methods for Partial Differential Equations, Preprint, U Vienna, 2002.
[6] Skalak, Z. \& Kucera, P., Remark on Regularity of Weak Solutions to The Navier-Stokes Equations Comment. Math. Univ, 2001.
[7] Teman, R., Navier-Stokes Equations Theory and Numerical Analysis, Springer-Verlag, New York, 1977.

[^0]: * Associate Professor, Dr, Department of Mathematics, Yadanabon University

