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  Existence of Solutions of Navier-Stokes Equations 

 

Thit Thit Win

 

 

Abstract 
In this paper, some function spaces, definitions and lemmas are presented first. Next, the 

variational formulation and the initial boundary value problem of the Navier-Stokes equations 

are discussed. Finally, the existence of solutions of Navier-Stokes equations are determined. 
 

1. Preliminaries 

1.1 Some Function Spaces 

 Let   be an open bounded set in n . We assume 

     v div v 0   |V D ,            (1) 

    1

0V the closure of in H V , 

         1

0v H div v 0   |             (2) 

    2H the closure of in L V , 

         2v L div v 0, v v | 0        | .        (3) 

 The space H is equipped with the scalar product ( , )   induced by  2L  ; the space V 

is a Hilbert space with the scalar product 

      
n

i i

i 1

(u, v) D u,D v


 ,            (4) 

since   is bounded. The space V is contained in H and it is dense in H. The injection is 

continuous. Let H  and V  denote the dual spaces of H and V, and let i denote the injection 

mapping from V into H. The adjoint operator i  is linear and continuous from H  into V , and 

i  is one to one since i(V) V  is dense in H and i (H )   is dense in V  since i is one to one; 

therefore H  can be identified with a dense subspace of V . 
 Moreover, by the Riesz representation theorem, we can identify H and H , and we 

arrive at the inclusions 

   V H H V    ,             (5) 

where each space is dense in the following one and the injections are continuous.  

 As a consequence of the previous identifications, the scalar product in H of f H  and 

u V  is the same as the scalar product of f and u in the duality between V  and V such that 

    f ,u f ,u , f H  , u V  .           (6) 

 For each u in V, the form 

     v V u, v                (7) 

is linear and continuous on V; therefore there exists an element of V  which  we denote by Au 

such that 

     Au, v u, v , v V   ,            (8) 

where the mapping u Au  is linear and continuous and is an isomorphism from V onto V . 
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1.2 Definition 

 Let a, b be two extended real numbers, a b   , and let X be a Banach space. 

For given  , 1   , L (a,b;X)
 denotes the space of L -integrable functions from 

 a, b  into X, which is a Banach space with the norm 

   

1
b

X

a

f (t) dt


  
 
  
 . 

1.3 Definition 

 The space L (a,b;X)
 is the space of essentially bounded functions from  a, b  into X 

and is equipped with the Banach norm 

   
 

X
a,b

Ess sup f (t) . 

 

1.4 Definition 

 The space   C a,b ;X  is the space of continuous functions from  a, b  into X and if 

a b    is equipped with the Banach norm 

   
 

X
t a,b

sup f (t)


. 

 

1.5 Lemma 

 Let X be a given Banach space with dual X  and let u and g be two functions 

belonging to 1L (a,b;X) . Then, the following three conditions are equivalent 

 (i) u is a.e equal to a primitive function of g, 

    
t

0

u(t) g(s)ds, X, a.e, t a, b    ;          (9) 

 (ii) For each test function  (a,b)D , 

   

b b

a a

d
u(t) (t)dt g(t) (t)dt

dt

 
       

 
  ;        (10) 

 (iii) For each X , 

   
d

u, g,
dt

   ,                       (11) 

in the scalar distribution sense, on (a,b) . If (i)-(iii) are satisfied u, in particular, is a.e. equal to 

a continuous function from  a, b  into X. 

Proof: see [7]. 

 Let 0X , X, 1X  be three Banach spaces such that 0 1X X X  , where the injections 

are continuous and iX  is reflexive, i 0,1 , the injection 0X X  is compact. 

 

1.6 Definition 

 Let T 0  be a fixed finite number, and let 0 , 1  be two finite numbers such that 

i 1  , i 0,1 . 

 We consider the space 

   0 1 0 10,T; , ;X ,X  Y Y            (12) 
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     0 1

0 1

dv
v L 0,T;X v L 0,T;X

dt

  
    

 
|Y .        (13) 

 The space Y  is provided with the norm 

   
   0 1

0 1L 0,T;X L 0,T;X
v v v  
Y

                    (14) 

which makes it a Banach space. It is evident that  0L 0,T;X


Y , with a continuous 

injection. 

 Let us assume that 0X , X, 1X  are Hilbert space with 

   0 1X X X  ,                       (15) 

 the injections being continuous and the injection of 0X  into X is compact.   

             (16) 

 If v is a function from R into 1X , we denote by v̂  its Fourier transform 

   2i tv̂( ) e v(t)dt



  



   .                      (17) 

 The derivative in t of order   of v is the inverse Fourier transform of   ˆ2i v


  or 

    r

t
ˆD v( ) 2i v( )


    .                     (18) 

 

1.7 Definition 

 For given 0  , we define the space  

        2 2

0 1 0 t 1R;X ,X v L R;X D v L R;X   |H .        (19) 

 This is a Hilbert space for the norm 

   
     

2
20 1 0

1

1

2 22

R;X ,X L R;X
L R;X

ˆv v v

 
   
 

H
.   

 We associate with any set K R , the subspace K

H  of H  defined as the set of 

functions u in H  with support contained in K: 

      K 0 1 0 1R;X ,X u R;X ,X support u K   |H H .   (20) 

 

1.8 Theorem 

 Let us assume that 0X , X, 1X  are Hilbert spaces which satisfy (15) and (16). Then for 

any bounded set K and any 0  , the injection of  K 0 1R;X ,XH  into  2L R;X  is compact. 

Proof: See [7]. 

 

2. NAVIER-STOKES EQUATIONS 

 We assume that a fluid fills a region   of space. If the fluid is Newtonian, then the 

functions  , p, u are governed by the momentum conservation equation (Navier-Stokes 

equation), by the continuity equation (mass conservation equation) and by some constitutive 

law connecting   and p: 

   
n

i

i 1 i

u u
u u 3 u p f

t x

  
         

  
 ,             (21) 

      div ( u) 0
t


  


,        (22) 
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where 0   is the kinematic viscosity,   another physical parameter and f f (x, t)  

represents a density of force per unit volume. If the fluid is homogeneous and incompressible, 

then   is a constant independent of x and t and the equations reduce to 

   
n

i

i 1 i

u u
u u p f

t x

  
     

  
 ,                    (23) 

       div u 0 .                 (24) 

 Usually we take 1  , set     and using the differential operator 

1 2 n

, , ,
x x x

   
   

   
 arrive at 

    
u

u u u p f
t


    


,                     (25) 

with initial condition: 

   0u(x,0) u (x) , x  ( 0u  given)                    (26) 

and boundary condition: 

  u(x, t) (x, t)  , x , t 0  (  bounded,   given).    (27) 

 

3. VARIATIONAL FORMULATION 

 Let   be a Lipschitz open bounded set in nR  and let T 0  be fixed. The initial 

boundary value problem of the full Navier-Stokes equations is the following: 

 To find a vector function 

     nu : 0,T R   

and a scalar function 

    p : 0,T R  , 

 

 

such that 

  
n

i i

i 1

u
u u D u p f

t 


   


  in  Q 0,T  ,        (28) 

   div u 0  in Q,                      (29) 

   u 0  on  0,T ,                      (30) 

   0u(x,0) u (x) , in  .                     (31) 

 As before, the functions f and 0u  are given, defined on  0,T  and   respectively. 

Let us assume that u and p are classical solutions of (28)-(31), say 2u C (Q) , 1p C (Q) . 

Obviously  2u L 0,T;V . Multiplying (28) by vV  and integrating over  , we have 

    
n

i i

i 1

u
vdx u vdx u D u vdx pvdx fvdx

t    



      


     . 

 We define the trilinear form b by setting 

    
n

i i j j

i, j 1

b(u, v, w) u D v w dx




 . 

 Then we have 

  
u

, v u v dx b(u,u, v) pdiv vdx f , v
t  

 
       

 
   
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      
d

u, v (u, v) b(u,u, v) f , v
dt

    .        (32) 

 By continuity, equation (32) will hold for each v V . 

 

3.1 Variational Problem 

 For f and 0u  given with 

    2f L 0,T;V                       (33) 

   0u H ,                       (34) 

to find u satisfying 

    2u L 0,T;V                       (35) 

and  

     
d

u, v (u, v) b(u,u, v) f , v
dt

    , v V          (36) 

   0u(0) u .                       (37) 

 

3.2 Properties of Trilinear Form 

 A trilinear continuous form b has the following properties: 

   b(u, v, w) b(u, w, v)  , u,v,w V                    (38) 

   b(u, v, v) 0 , u,v V  .                     (39) 

For u, v in V, we denote by B(u, v)  the element of V  defined by  

   B(u, v), w b(u, v, w) , w V  ,                    (40) 

and we set  

   B(u) B(u,u) V  , u V  .                     (41) 

 

3.3 Lemma 

 We assume that the dimension of the space is n 4  and that u belongs to 2L (0,T;V) . 

Then the function Bu defined by 

   Bu(t), v b u(t),u(t), v , v V  ,  a.e.in t 0,T , 

belongs to 1L (0,T;V ) . 

Proof 

 For almost all t, Bu(t)  is an element of V , and the function 

 Bu : t 0,T Bu(t) V    is measurable. Moreover, since b is trilinear continuous on V,  

   
2

v
Bw c w


 , w V                       (42) 

so that 

   

T T
2

v

0 0

Bu(t) dt c u(t) dt


    . 

Therefore the function Bu is bounded in 1L (0,T;V ) . 

 If u satisfies (35)-(36), then by (6), (8), and the above lemma one can write (36) as 

  
d

u, v f Au Bu, v
dt

   , v V  . 
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 Since A is linear and continuous from V into V  and 2u L (V) , therefore the function 

Au belongs to 2L (0,T;V ) , the function f Au Bu   belongs to 1L (0,T;V ) . Lemma 1.5 

implies then that 

   

1u L (0,T;V )

u f Au Bu

  


    
                      (43) 

and that u is almost everywhere equal to a continuous function from  0,T  into V . This 

makes (37) meaningful. 

 An alternate formulation of the problem (35)-(37) is: 

 

3.4 Problem 

 Given f and 0u  satisfying (33)-(34), to find u satisfying 

   2 1u L (0,T;V),u L (0,T;V )   ,                    (44) 

   u Au Bu f     on (0,T) ,                                (45) 

   0u(0) u .                       (46) 

 We showed that any solution of problem (3.1) is a solution of problem (3.4); these 

problems are equivalent. 

 The existence of solutions of these problems is ensured by the following theorem. 

 

 

4. EXISTENCE RESULT 

4.1 Theorem 

 Let the dimension n be less than or equal to 4. Let there be given f and 0u  which 

satisfy (33)-(34). Then there exists at least one function u which satisfies (44)-(46). Moreover, 

   u L (0,T;H) .                      (47) 

Proof 

 (i) We apply the Galerkin procedure. Since V is separable and V  is dense in V, there 

exists a sequence 1 mw , , w ,  of elements of V , which is free and total in V. For each m, 

we define an approximate solution mu  of (36) as follows: 

   
m

m im i

i 1

u g (t)w


                       (48) 

and 

      m j m j m m j ju (t), w u (t), w b u (t), u (t), w f (t), w ,   
       

 

 t 0,T , j 1, ,m,                (49) 

           m 0mu (0) u ,                      (50) 

where 0mu  is the orthogonal projection in H of 0u  onto the space spanned by 1 mw , , w . The 

equation (49) forms a nonlinear differential system for the functions 1m mmg , ,g : 

  
m m

i j im i j im

i 1 i 1

(w , w )g (t) (w , w ) g (t)
 

      

       
m

i l j im lm j

i,l 1

b(w , w , w )g (t)g (t) f (t), w


  , j 1, ,m .       (51) 

 Inverting the nonsingular matrix with elements 
i j(w ,w ) , 1 i , j m , we can write 

the differential equations in the usual form 
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m m m

im ij jm ijk jm km ij j

j 1 j,k 1 j 1

g (t) g (t) g (t)g (t) f (t), w  
  

      ,      (52) 

where 
ij ijk ij, , R    . 

 The condition (50) is equivalent to the m scalar initial conditions 

   th

im 0mg (0) thei component of u .                    (53) 

 The nonlinear differential system (52) with the initial condition (53) has a maximal 

solution defined on some interval  m0, t . If mt T , then mu (t)  must tend to   as mt t ; 

the priori estimates we shall prove that this does not happen and therefore mt T . 

 (ii) We multiply (49) by 
jmg (t)  and add these equations for j 1, ,m . 

 Taking (39) into account, we get 

  
2

m m m mu (t), u (t) u (t) f (t), u (t)   ,  

                     mV
2 f (t) u (t)


 .                              (54) 

By using Young’s inequality, we have 

  
2 2 2

m m m m V

1
u (t),u (t) u (t) 2 u (t) f (t)

2 2 

 
    

 





. 

And so  
2 2 2

m m V

d 1
u (t) u (t) f (t)

dt


 
  .                     (55) 

 Integrating (55) from 0 to s, we obtain in particular, 

  
s s s

2 2 2

m m V

0 0 0

d 1
u (t) dt u (t) dt f (t) dt

dt


 
    . 

Then  
s

2 2 2

m m V

0

1
u (s) u (0) f (t) dt

 
   . 

Hence   
 

T
2 2 2

m 0 V
s 0,T

0

1
sup u (s) u f (t) dt

 


                       (56) 

which implies that 

 the sequence mu  remains in a bounded set of L (0,T;H) .        (57) 

Then we integrate (55) from 0 to T to get 

  
T T

2 2 2 2

m m 0m V

0 0

1
u (T) u (t) dt u f (t) dt

 
     

       
T

2 2

0 V

0

1
u f (t) dt

 
   . 

Therefore the sequence mu  remains in a bounded set of 2L (0,T;V) .      (58) 

 (iii) Let mu  denote the function from R into V which is equal to mu  on  0,T  and to 0 

on the complement of this interval. The Fourier transform of mu  is denoted by mû . 

 We want to show that 

  
2 2

mû ( ) d const.


  




 , for some 0  .         (59) 

 Along with (58), this will imply that 

  mu belongs to a bounded set of  R;V,HH                    (60) 

and will enable us to apply the compactness result of Theorem 1.8. 
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 In order to prove (59) we observe that (49) can be written 

    m j m m ju (t), w f Au Bu , w     

          m jf , w , 

where 
m mf f  on  0,T , 0 outside this interval. By Lemma (1.5), each function mu  is after 

modification on a set of measure 0, continuous from  0,T  into H. It is classical that since mu  

has two discontinuous at 0 and T, the distribution derivative of mu  is given by  

   m
m m 0 m T

du
g u (0) u (T)

dt
    , 

where 0 , T  are Dirac distributions at 0 and T and 

   m mg u  the derivative of mu  on  0,T . 

m j m j 0m j 0 m j T

d
(u , w ) f , w (u , w ) (u (T), w )

dt
    , j 1, ,m .        (61) 

 By the Fourier transform, we have 

 2 it 2 it 2 itm
j m j m 0 j

du
e dt, w f e dt, w u (0) e dt, w

dt

  

  

  

   
    

   
   
  

       

      2 it

m T ju (T) e dt, w







 
 
 
 


  . 

Then 

   2 iT 2 it 2 it

m j m j m j m je u (T), w u (0), w 2 i e u dt, w f e dt, w .

 

  

 

 
   

 
 
 

       Therefore      

     2 iT

m j m j m j m j
ˆˆe u (T), w u (0), w 2 i u , w f , w       . 

Hence           2 iT

m j m j 0m j m j
ˆˆ2 i u , w f , w u , w u (T), w e       ,        (62) 

mû  and 
mf̂  denoting the Fourier transforms of mu  and 

mf  respectively. 

 We multiply (62) by 
jmĝ ( )  (   Fourier transform of 

jmg ) and add the resulting 

equations for j 1, ,m ; we get 

   
2 2i T

m m m 0m m m m
ˆˆ ˆ ˆ ˆ2i u ( ) f ( ), u ( ) u ,u ( ) u (T),u ( ) e           .     (63) 

 
T T

m m mV V

0 0

f (t) dt f (t) Au Bu dt
 

     

           
T

m mV V V

0

f (t) Au (t) Bu (t) dt
  

   . 

 

 

By (42), we have 

    
T T

2

m m 1 mV V

0 0

f (t) dt f (t) u (t) c u (t) dt
 

    . 

 Since the sequence mu  remains in a bounded set of 2L (0,T;V) , the sequence mf  is in 

a bounded set of 1L (0,T;V ) . i.e., 
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   m 2
VR

ˆsup f ( ) c m


 


 . 

By (56), we have 

   m 3u (0) c , m 3u (T) c  . 

From (63), we obtain 
2

m m m m m m m
V

ˆˆ ˆ ˆ ˆ2 i u ( ) f ( ) u ( ) u (0) u ( ) u (T) u ( )      


    

            4 m
ˆc u ( )  where 

4 2 3 3c c c c   .          (64) 

For fixed 
1

4
  , we observe that  

   
2

5 1 2

1
c ( ) , R

1






  





  


. 

Thus  
2 2 2

m 5 m1 2

1
ˆ ˆu ( ) d c ( ) u ( ) d

1






     



 



 





   

        

2 2

m m

5 1 2 1 2

ˆ ˆu ( ) u ( )
c ( ) d d

1 1
 

  
  

 

 

 

 

 
  

   
  . 

By (64), we have 

 
2 2 2m

m 6 7 m1 2

û ( )
ˆ ˆu ( ) d c d c u ( ) d

1






     



  



  

 


   .        (65) 

By the Parseval equality and (58), the last integral of (65) is bounded as m  . i.e., 

   
T

2 2

7 m 7 m 8

0

c u (t) dt c u (t) dt c





   .                    (66) 

By the Cauchy Schwarz inequality, the first integral on the right hand side of (65) becomes

   

 

1
12
2

2m

6 6 m1 2 2
1 2

û ( ) 1
ˆc d c d u (t) dt

1 1





 

 

  




  

 
  

         
 

   . 

By the Parseval equality, we have 

  

 

1

12
T 2

2m

6 6 m1 2 2
1 2

0

û ( ) 1
c d c d u (t) dt

1 1





 

 

 




 

 
  

        
 

    

which is finite since 
1

4
   and bounded as m   by (58).  Therefore, (59) is proved. i.e., 

   2

t mD u L (R;H)  . 

Since the sequence mu  is bounded in 2L (R;V) , mu  belongs to a bounded set of 

 R;V,HH . 

(iv) The estimates (57) and (58) enable us to assert the existence of an element 
2u L (0,T;V) L (0,T;H)   and a sub-sequence mu   such that 

  

2

mu u in L (0,T;V) weakly,and in

L (0,T;H) weak-star,as m .








 
                    (66) 
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By (60) and Theorem (1.8), we have 

   2

mu u in L (0,T;H)   strongly.                    (67) 

The convergence results (66) and (67) enable us to pass to the limit. 

 Let   be a continuously differentiable function on  0,T  with (T) 0  . We multiply 

(49) by (t)  and integrate by parts, then we get 

 

     
T T T

m j m j m m j

0 0 0

u (t), w (t)dt u (t), w (t)dt b u (t),u (t), w (t)dt          

T

j

0

f (t), w (t)dt,   

      
T T T

m j m j m m j

0 0 0

u (t), (t)w dt u (t), w (t) dt b u (t),u (t), w (t) dt         

T

om j j

0

(u , w ) (0) f (t), w (t) dt    .                       (68) 

For the nonlinear term, we have 

            
T T

m m j m j m

0 0

b u (t),u (t), w (t) dt b u (t), w (t),u (t) dt      

                       
Tn

m j i j mi j
i, j 1 0

u (t) w D (t) u (t) dxdt
 

   . 

These integrals converge to 

         
T Tn

j i ji j
i, j 1 0 0

u(t) w D (t) u(t) dxdt b u(t), v (t),u(t) dt
 

       

             
T

0

b u(t),u(t), v (t) dt  . 

In the limit we find that the equation 

      
T T T

0 0 0

u(t), v (t) dt u(t), v (t) dt b u(t),u(t), v (t) dt         

T

o

0

(u , v) (0) f (t), v (t) dt    ,                       (69) 

holds for 1 2v w , w , ,  by linearity this equation holds for v   any finite linear combination 

of the 
jw  and by a continuity argument (69) is still true for any v V . 

 By writing, in particular, (69) with  (0,T)  D , u satisfies (36) in the 

distribution sense. 

 Finally, it remains to prove that u satisfies (37). For this, we multiply (36) by  , and 

integrate. After integrating the first term by parts, we get 

      
T T

T

0
0 0

u(t) (t), v u(t), v (t)dt u(t), v (t) dt          

 
T

0

b u(t),u(t), v (t) dt   
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T

0

f (t), v (t) dt   

      
T T T

0 0 0

u(t), v (t) dt u(t), v (t) dt b u(t),u(t), v (t) dt         

 
T

0

u(0), v (0) f (t), v (t) dt    . 

By comparison with (69), 

    0u(0) u , v (0) 0   . 

By choosing   with (0) 1  , we obtain 

    0u(0) u , v 0  , v V  . 

Therefore   0u(0) u . 
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